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Numerical algorithms based on the theory of ill-posed problems are suggested for estimation of the filtration
parameters of a bed using the results of hydrodynamic studies of vertical wells. These algorithms allow deter-
mination of the coefficients of compressibility, efficiency, and hydraulic conductivity of the critical and distant
zones and interpretation of the results of the hydrodynamic studies with account for the dependence of the fil-
tration parameters on pressure.

Problems on determination of the filtration parameters of an oil bed by geological-commercial data belong to
the class of inverse problems of ground hydromechanics. The distinctive property of them is the dependence of addi-
tional data on the possibilities of an industrial experiment. In the present paper, we consider problems on determination
of the filtration parameters of porous media by regularization methods. Use of the latter allows one to improve the ac-
curacy and reliability of the filtration parameters under estimation. Results of hydrodynamic studies of vertical wells
are used as experimental data.

1. In what follows, we suggest a computational algorithm which makes it possible to estimate the coefficients
of compressibility, efficiency, and hydraulic conductivity of the critical and distant zones of the well and values of bed
pressure and the radius of the external boundary of the bed.

We estimate the parameters σ, β∗ , and pbed by minimization of the functional [1–4]

J =  ∫ 
0

texp

 (ϕ (t) − p (rw, t))2
 dt , (1)

when the process of unsteady filtration is described by the equation [5]
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 ,   0 < t ≤ texp ,   rw < r < Rex.b , (2)

with initial and boundary conditions

p (r, 0) = f (r) , (3)
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p (Rex.b, t) = pbed . (5)
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Using the method of small perturbations and the condition of stationarity of the Lagrange functional, we can
obtain expressions for the gradient of the functional for the case of a uniform bed [1]:
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 and ψ(r, t) is the solution of the corresponding conjugate problem. The process of iteration

for recovery of unknown parameters is constructed by a gradient method [1, 5, 6]. The direct problem (2)–(5) and the
corresponding conjugate problem are solved by a finite-difference method according to an implicit scheme [7].

In estimating the contamination of the critical zone we assume the bed to be zonally simplex. The coefficients
of hydraulic conductivity of the critical and distant zones are found by a gradient method. The components of the gra-
dient of the functional are calculated as follows:
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Here r1 is determined from the minimum of functional (1) [6].
The coefficient of efficiency η has the form [8]

η = 2πσ ⁄ ln 
Rex.b

rw
 , (8)

where the value of the radius of the external boundary Rex.b is verified by solving the inverse problem (1)–(5) based
on the relation

Rex.b = √rw
2

 + π 
σ

Hβ∗
 texp  . (9)

2. The process of development of oil deposits is virtually always accompanied by changes in interstitial pres-
sure and the pressure of uniform compression of rocks. The medium structure changes under the action of external and
interstitial pressures. By virtue of this, it is of interest to consider the effect of regimes of development on filtration
parameters of the bed.

Experimental studies showed that the dependence of the filtration parameters of the bed on pressure, as a rule,
is well approximated by monotonic and convex functions [8, 9]. Therefore, we seek the estimate of the parameter σ(p)
in this class of functions by the method of descriptive regularization [10, 11]. To do this we solve the variational
problem

   inf
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  J (σ) ,   J (σ) =  ∫ 

0
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 (ϕ (t) − p (rw, t))2
 dt , (10)

and describe the process of unsteady filtration by the equation
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with the corresponding initial and boundary conditions of the type (3)–(5). Here D satisfies the following limitations:
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0 < σmin ≤ σ ≤ σmax ,   σp (p) ≥ 0 ,   σpp (p) ≥ 0 ,   p 2 [C1, C2] ,   C1, C2, σmin, σmax = const > 0 . (12)

The expression for the gradient of functional (10) has the form

(∇ J (σ), δσ) = − 2π  ∫ 
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where p(r, t) satisfies conditions (11) and ψ(r, t) is the solution of the conjugate problem
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In numerical realization, variational problem (10) is reduced to the problem of nonlinear programming

  min
σ~2D

~
  J (σ~) ,   J (σ~) =  ∑ 
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2
 . (18)

Here D
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where pij is the solution of the difference analog of problem (11); at the nodes of the grid ω
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To solve the problem of minimization (18) with limitations (19)–(21) numerically, we use the method of pro-
jections of conjugate gradients [10].

The convergence and stability of the algorithm suggested as functions of the form of limitations imposed on
the function σ(p) to be determined were studied by model problems. An analysis of the results obtained shows that
use of a priori information leads to improvement of the quality of approximate solutions.

3. Three curves of pressure recovery (CPR) were taken on well No. 4788 (Deposit Shegurchinskoe, Tatarstan)
at different instants of time (Fig. 1). Results of the calculation are given in Table 1 and Fig. 2. Half of the mean dis-
tance from the studied well to the surrounding operating wells closest to it was taken as initial approximation of
Rex.b and the last measurement of pressure — as the initial approximation of pbed. It follows from results of the cal-
culations that contamination of the critical zone is not very high. Interpretation of the first curve indicated that the es-
timates of hydraulic conductivity of the critical and external zones are of the same order of magnitude. This is
connected with the fact that bottom-hole pressure at the initial stage of the experiment was not measured, i.e., the in-
itial portion of the curve, which characterizes the critical zone, is absent.

Estimates of the coefficients of hydraulic conductivity for a uniform bed are in good agreement with estimates
of the coefficients of hydraulic conductivity of the external zone [9]. According to the displayed curve, which is con-
structed based on results of the hydrodynamic studies of well No. 4788, the coefficient of efficiency is η = 2.6⋅10−5.

Figure 2 presents the dependences of hydraulic conductivity on the pressure drop calculated by three CPR.
Results of the interpretation of the hydrodynamic studies by the method of descriptive regularization are in agreement
with the calculations given in Table 1.

Results of the calculations show that the suggested technique based on the theory of regularization for inter-
pretation of data of the hydrodynamic studies makes it possible to estimate contamination of the critical zone. The
computational algorithm based on the method of descriptive regularization allows recovery of the filtration parameters
of the bed with account for their dependence on pressure.

Fig. 1. Curves of pressure recovery taken on well No. 4788.

Fig. 2. Hydraulic conductivity as a function of pressure drop.

TABLE 1. Results of Interpretation of the Curves of Pressure Recovery Taken on Well No. 4788

Number of CPR
Uniform bed Zonally simplex bed

σ⋅102 β∗ ⋅104 pbed Rex.b η⋅105 σ1⋅102 σ2⋅102

1 2.6 4.9⋅10−4 9.2 170 2.4 2.6 2.6

2 1.9 2.7⋅10−4 9.2 220 2.2 0.8 2.0

3 1.8 1.7⋅10−4 8.9 250 2.2 1.4 1.8
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It should be noted that the algorithms suggested above for estimation of the filtration parameters of the bed
by the results of hydrodynamic studies of vertical wells make it possible to allow for inflow of liquid after shutdown
of the well [5].

NOTATION

r, radius, m; t, time, sec; p, pressure, MPa; Rex.b, radius of the external boundary, m; rw, well radius, m; q(t),
well flow rate, m3/sec; H, bed thickness, m; pbed, pressure in the bed, MPa; f(r), initial distribution of pressure in the
bed, MPa; ϕ(t), measurement of bottom-hole pressures in the well during the commercial experiment, MPa; texp, time
of the commercial experiment, sec; σ, coefficient of hydraulic conductivity, µm2⋅m/(mPa⋅sec); δσ, increment of the co-
efficient of hydraulic conductivity; β∗ , coefficient of compressibility, 1/MPa; η, coefficient of efficiency, m3/(sec⋅MPa);
σ1 and σ2, coefficients of hydraulic conductivity of the critical and distant zones, µm2⋅m/(mPa⋅sec); r1, radius of the
critical zone, m; ∆p, pressure drop, MPa; J, functional; ψ, Lagrange factor; ω

__
h, ω

__
τ, difference grid; M, number of time

nodes; N, number of spatial nodes; τ, time step; h, step along the space coordinate; ω
__

w, grid of pressure nodes; wk,
step of the pressure grid; L, number of nodes of the pressure grid; C1 and C2, minimum and maximum values of pres-
sure; σmin and σmax, minimum and maximum values of hydraulic conductivity; D, set of monotonic and convex func-
tions; σ~, grid function; D

~
, set of grid functions. Subscripts: bed, bed; i, j, numbers of nodes of the computational grid;

k, numbers of nodes of the pressure grid; ex.b, external boundary; w, well; exp, experiment; min, minimum; max,
maximum.
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